280 50

铝合金专用焊锡丝:铝合金的焊接性

发布时间:2023-07-02 00:00:00

铝合金具有良好的耐蚀性、较高的比强度和导热性以及在低温下能保持良好力学性能等特点,在航空航天、汽车、电工、化工、交通运输、国防等工业部门被广泛地应用。掌握铝合金的焊接性特点、焊接操作技术、接头质量和性能、缺陷的形成及防止措施等,对正确制定铝合金的焊接工艺,获得良好的接头性能和扩大铝合金的应用范围具有十分重要的意义。


铝的重量轻和耐腐蚀是其性能的两大突出特点,纯铝的密度约为2.7 g/cm3,仅为铁、铜密度的1/3;铝及铝合金的表面易生成一层致密、牢固的Al2O3保护膜,这层保护膜只有在卤素离子或碱离子的激烈作用下才会遭到破坏,因此具有很好的耐大气(包括工业性大气和海洋大气)腐蚀和水腐蚀的能力,能抵抗多数酸和有机物的腐蚀。采用缓蚀剂,可耐弱碱液腐蚀;采用保护措施,可以提高铝合金的耐蚀性能。在各种牌号的变形铝及铝合金中,铝锰和铝镁合金属于防锈铝合金,不能热处理强化,但强度比纯铝高,并具有优秀的抗蚀性和焊接性能。


铝合金的焊接性特点

受铝合金理化特性的影响,在焊接过程中存在一定难度,目前的铝合金焊接主要存在以下几个问题:热应力、烧蚀蒸发、固态夹杂、气孔塌陷等:


热应力

铝合金的热膨胀系数较高,弹性模量较小。在焊接过程中,由于铝合金变形大、线膨胀系数大,凝固时体积收缩率达6%左右,且冷却速度和熔池一次结晶速度快,导致焊缝的内应力和焊接接头的刚性拘束度较大,易使铝合金接头内产生较大的内应力,引起较大的焊接应力与变形,形成裂纹、波浪变形等缺陷。

 

烧蚀蒸发

铝的熔点为660℃,沸点为2647℃,相比于铜、铁其他金属元素较低。在焊接过程中,如果焊接温度过高,容易产生爆炸并形成飞溅,尤其在高能束焊接时更易发生,如图1所示。另外,铝合金中添加的合金元素有的沸点较低,在焊接的瞬时高温下极易蒸发烧损,爆炸产生的飞溅也会带走部分液滴,从而不可避免的改变了焊缝区的预定化学成分,不利于焊接接头的性能调控。因此,为了弥补高温烧蚀,在焊接时常常选用沸点元素含量比母材高的焊丝或者其他焊接材料。

 

固态夹杂

铝的化学性质很活泼,极易氧化。在焊接过程中,铝合金表面发生氧化形成高熔点的Al2O3(约为2050℃,而铝的熔点为660℃,两者相差很大)。氧化物致密且硬度较高,夹杂在熔池区密度较小的熔融合金液中,容易形成细小的固态夹渣不易排出,不仅影响焊缝的组织成形,也易产生电化学腐蚀,这会造成焊接接头力学性能的下降,并且Al2O3覆盖在熔池和坡口上,严重影响了合金的焊接,降低焊接接头的组织性能。

 

气孔塌陷

铝合金的熔点远小于其氧化物,且性质活泼极易氧化。在焊接过程中,铝合金因高温熔化形成熔池。而熔池表面的铝被氧化生成氧化膜,以固态的形式覆盖于熔池之上。由于氧化膜熔化后颜色与铝合金熔融状态并无太大差别,且因为氧化膜的覆盖在焊接过程中很难观察到铝合金熔池熔化的程度,因此易造成温度过高,引起焊接热影响区的大块塌陷,破坏焊缝金属的形状及性能。

广胜焊锡丝.png

广胜纯锡锭

在焊接热源瞬时高功率的作用下,在合金液中溶解了大量的氢气,焊接完成后,随着熔池温度的降低,气体的溶解度也逐渐减小,这成了焊接过程中产生气孔的主要原因。由于铝合金凝固速度过快且密度较低,在焊缝迅速固化过程中,形成了大小不一的氢气孔。这些气孔会在焊接过程中不断地聚集和扩展,最终形成了可见的大气孔,降低了接头的组织性能。当然,气孔的产生不一定是在焊接过程中形成的,由于铸造工艺技术的影响,母材本身在铸造过程中也会产生气孔。焊接时,热输入和内部压力不断变化引起母材中原有的气孔受热膨胀或相互结合形成焊缝气孔,随着焊接热输入的增加气孔也会随之增大。因此,为控制氢的来源,焊接材料在使用前需经过严格的干燥处理,焊接时,适当的加大电流以延长熔池的存在时间,给氢气足够的时间析出,从而控制气孔的形成。